Background: About 50% of cutaneous melanoma (CM) harbors the activating BRAFV600 mutation which exerts most of the oncogenic effects through the MAPK signaling pathway. In the last years, a number of MAPK modulators have been identified, including Spry1. In this context, we have recently demonstrated that knockout of Spry1 (Spry1KO) in BRAFV600-mutant CM led to cell cycle arrest and apoptosis, repressed cell proliferation in vitro, and reduced tumor growth in vivo. Despite these findings, however, the precise molecular mechanism linking Spry1 to BRAFV600-mutant CM remains to be elucidated. Materials and methods: Immunoprecipitation coupled to mass spectrometry was employed to gain insight into Spry1 interactome. Spry1 gene was knocked-out using the CRISPR strategy in the BRAF-mutant cell lines. Transmission electron microscopy was used to assess the relationship between Spry1 expression and mitochondrial morphology. By using in vitro and in vivo models, the effects of Spry1KO were investigated through RNA-sequencing, quantitative real-time PCR, Western blot, and immunofluorescence analyses. The Seahorse XF24 assay allowed realtime measurement of cellular metabolism in our model. Angiogenic potential was assessed through in vitro tube formation assays and in vivo CD31 staining. Results: Spry1 was mainly located in mitochondria in BRAFV600-mutant CM cells where it interacted with key molecules involved in mitochondrial homeostasis. Spry1 loss resulted in mitochondrial shape alterations and dysfunction, which associated with increased reactive oxygen species production. In agreement, we found that nuclear hypoxia-inducible factor-1 alpha (HIF1α) protein levels were reduced in Spry1KO clones both in vitro and in vivo along with the expression of its glycolysis related genes. Accordingly, Ingenuity Pathway Analysis identified “HIF1α Signaling” as the most significant molecular and cellular function affected by Spry1 silencing, whereas the glycolytic function was significantly impaired in Spry1 depleted BRAFV600-mutant CM cells. In addition, our results indicated that the expression of the vascular endothelial growth factor A was down-regulated following Spry1KO, possibly as a result of mitochondrial dysfunction. Consistently, we observed a substantial impairment of angiogenesis, as assessed by the tube formation assay in vitro and the immunofluorescence staining of CD31 in vivo. Conclusions: Altogether, these findings identify Spry1 as a potential regulator of mitochondrial homeostasis, and uncover a previously unrecognized role for Spry1 in regulating nuclear HIF1α expression and angiogenesis in BRAFV600-mutant CM. Significance: Spry1KO profoundly impacts on mitochondria homeostasis, while concomitantly impairing HIF1α-dependent glycolysis and reducing angiogenesis in in BRAF-mutant CM cells, thus providing a potential therapeutic target to improve BRAFV600-mutant CM treatment.

Suppression of Spry1 reduces HIF1 alpha-dependent glycolysis and impairs angiogenesis in BRAF-mutant cutaneous melanoma

Roberto Guerrieri;Marina Comelli;Alessia Covre;Eva Andreuzzi;Elisabetta Fratta
2025-01-01

Abstract

Background: About 50% of cutaneous melanoma (CM) harbors the activating BRAFV600 mutation which exerts most of the oncogenic effects through the MAPK signaling pathway. In the last years, a number of MAPK modulators have been identified, including Spry1. In this context, we have recently demonstrated that knockout of Spry1 (Spry1KO) in BRAFV600-mutant CM led to cell cycle arrest and apoptosis, repressed cell proliferation in vitro, and reduced tumor growth in vivo. Despite these findings, however, the precise molecular mechanism linking Spry1 to BRAFV600-mutant CM remains to be elucidated. Materials and methods: Immunoprecipitation coupled to mass spectrometry was employed to gain insight into Spry1 interactome. Spry1 gene was knocked-out using the CRISPR strategy in the BRAF-mutant cell lines. Transmission electron microscopy was used to assess the relationship between Spry1 expression and mitochondrial morphology. By using in vitro and in vivo models, the effects of Spry1KO were investigated through RNA-sequencing, quantitative real-time PCR, Western blot, and immunofluorescence analyses. The Seahorse XF24 assay allowed realtime measurement of cellular metabolism in our model. Angiogenic potential was assessed through in vitro tube formation assays and in vivo CD31 staining. Results: Spry1 was mainly located in mitochondria in BRAFV600-mutant CM cells where it interacted with key molecules involved in mitochondrial homeostasis. Spry1 loss resulted in mitochondrial shape alterations and dysfunction, which associated with increased reactive oxygen species production. In agreement, we found that nuclear hypoxia-inducible factor-1 alpha (HIF1α) protein levels were reduced in Spry1KO clones both in vitro and in vivo along with the expression of its glycolysis related genes. Accordingly, Ingenuity Pathway Analysis identified “HIF1α Signaling” as the most significant molecular and cellular function affected by Spry1 silencing, whereas the glycolytic function was significantly impaired in Spry1 depleted BRAFV600-mutant CM cells. In addition, our results indicated that the expression of the vascular endothelial growth factor A was down-regulated following Spry1KO, possibly as a result of mitochondrial dysfunction. Consistently, we observed a substantial impairment of angiogenesis, as assessed by the tube formation assay in vitro and the immunofluorescence staining of CD31 in vivo. Conclusions: Altogether, these findings identify Spry1 as a potential regulator of mitochondrial homeostasis, and uncover a previously unrecognized role for Spry1 in regulating nuclear HIF1α expression and angiogenesis in BRAFV600-mutant CM. Significance: Spry1KO profoundly impacts on mitochondria homeostasis, while concomitantly impairing HIF1α-dependent glycolysis and reducing angiogenesis in in BRAF-mutant CM cells, thus providing a potential therapeutic target to improve BRAFV600-mutant CM treatment.
File in questo prodotto:
File Dimensione Formato  
2025 Spry1.pdf

accesso aperto

Licenza: Creative commons
Dimensione 9.25 MB
Formato Adobe PDF
9.25 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1301572
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact