Zinc is an important physiological cation, and its misregulation is implicated in various diseases. It is therefore important to be able to image zinc by non-invasive methods such as Magnetic Resonance Imaging (MRI). In this work, we have successfully synthesized a novel Gd3+-based complex specifically for Zn2+ sensing by MRI. Using a combination of NMR, luminescence, potentiometric, and relaxivity experiments, completed with DFT calculations, we demonstrate that incorporating a short linker between the Zn2+ sensing unit and the Gd3+ complex leads to unique behavior of the system in the absence of Zn2+. A significant increase in efficacy of the system is observed upon Zn2+ binding, and importantly, the complex is highly selective for Zn2+ relative to other physiological cations. A comprehensive structural study reliably determines the microscopic parameters at the origin of the Zn2+ response, primarily an increase in the number of water molecules directly coordinated to Gd3+ upon Zn2+ binding. Crucially, the system maintains a strong response to Zn2+ binding in the presence of Human Serum Albumin, highlighting its potential for biological applications.

Zinc Sensing with a Pyridine-Based Lanthanide Contrast Agent: Structural Analysis in Aqueous Solution

Melchior A.;
2025-01-01

Abstract

Zinc is an important physiological cation, and its misregulation is implicated in various diseases. It is therefore important to be able to image zinc by non-invasive methods such as Magnetic Resonance Imaging (MRI). In this work, we have successfully synthesized a novel Gd3+-based complex specifically for Zn2+ sensing by MRI. Using a combination of NMR, luminescence, potentiometric, and relaxivity experiments, completed with DFT calculations, we demonstrate that incorporating a short linker between the Zn2+ sensing unit and the Gd3+ complex leads to unique behavior of the system in the absence of Zn2+. A significant increase in efficacy of the system is observed upon Zn2+ binding, and importantly, the complex is highly selective for Zn2+ relative to other physiological cations. A comprehensive structural study reliably determines the microscopic parameters at the origin of the Zn2+ response, primarily an increase in the number of water molecules directly coordinated to Gd3+ upon Zn2+ binding. Crucially, the system maintains a strong response to Zn2+ binding in the presence of Human Serum Albumin, highlighting its potential for biological applications.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1302365
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact