In general, the measurement of the sound radiation field by machinery and partitions requires time-consuming tests, which should be carried out in specially dedicated anechoic/reverberant facilities with calibrated sensors and complex acquisition and post processing equipment. This article introduces a two-step method for the identification from optical measurements of the free-field sound radiation generated by flexural vibrations of closed shells. In the first step, the flexural vibration of the shell is reconstructed with a frequency domain triangulation technique based on short multi-view video acquisitions made with a single high-resolution, high-speed camera. In the second step, the free-field sound radiation is derived from a discretized boundary integral formulation. The study is focused on the identification of the sound radiation from the flexural vibration of a baffled cylinder model structure. The vibration and sound fields reconstructed from the camera measurements are validated against direct measurements taken with a laser scanner vibrometer and a microphone array, respectively. Overall, this research demonstrates that optical methods based on camera measurements can be suitably employed to produce fast and accurate full-field measurements of sound radiation of closed shells (without the need for a dedicated measurement environment, e.g. reverberant, anechoic chambers).

3D sound radiation reconstruction from camera measurements

Baldini S.
;
Gardonio P.;Rinaldo R.
2025-01-01

Abstract

In general, the measurement of the sound radiation field by machinery and partitions requires time-consuming tests, which should be carried out in specially dedicated anechoic/reverberant facilities with calibrated sensors and complex acquisition and post processing equipment. This article introduces a two-step method for the identification from optical measurements of the free-field sound radiation generated by flexural vibrations of closed shells. In the first step, the flexural vibration of the shell is reconstructed with a frequency domain triangulation technique based on short multi-view video acquisitions made with a single high-resolution, high-speed camera. In the second step, the free-field sound radiation is derived from a discretized boundary integral formulation. The study is focused on the identification of the sound radiation from the flexural vibration of a baffled cylinder model structure. The vibration and sound fields reconstructed from the camera measurements are validated against direct measurements taken with a laser scanner vibrometer and a microphone array, respectively. Overall, this research demonstrates that optical methods based on camera measurements can be suitably employed to produce fast and accurate full-field measurements of sound radiation of closed shells (without the need for a dedicated measurement environment, e.g. reverberant, anechoic chambers).
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0888327025001013-main_compressed (1).pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 797.19 kB
Formato Adobe PDF
797.19 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1302705
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact