Predicting grapevine phenological stages (GPHS) is critical for precisely managing vineyard operations, including plant disease treatments, pruning, and harvest. Solutions commonly used to address viticulture challenges rely on image processing techniques, which have achieved significant results. However, they require the installation of dedicated hardware in the vineyard, making it invasive and difficult to maintain. Moreover, accurate prediction is influenced by the interplay of climatic factors, especially temperature, and the impact of global warming, which are difficult to model using images. Another problem frequently found in GPHS prediction is the persistent issue of missing values in viticultural datasets, particularly in phenological stages. This paper proposes a semi-supervised approach that begins with a small set of labeled phenological stage examples and automatically generates new annotations for large volumes of unlabeled climatic data. This approach aims to address key challenges in phenological analysis. This novel climatic data-based approach offers advantages over common image processing methods, as it is non-intrusive, cost-effective, and adaptable for vineyards of various sizes and technological levels. To ensure the robustness of the proposed Pseudo-labelling strategy, we integrated it into eight machine-learning algorithms. We evaluated its performance across seven diverse datasets, each exhibiting varying percentages of missing values. Performance metrics, including the coefficient of determination (R2) and root-mean-square error (RMSE), are employed to assess the effectiveness of the models. The study demonstrates that integrating the proposed Pseudo-labeling strategy with supervised learning approaches significantly improves predictive accuracy. Moreover, the study shows that the proposed methodology can also be integrated with explainable artificial intelligence techniques to determine the importance of the input features. In particular, the investigation highlights that growing degree days are crucial for improved GPHS prediction.

Boosting grapevine phenological stages prediction based on climatic data by pseudo-labeling approach

Fasihi M.;Sodini M.;Falcon A.;Sivilotti P.;Serra G.
2025-01-01

Abstract

Predicting grapevine phenological stages (GPHS) is critical for precisely managing vineyard operations, including plant disease treatments, pruning, and harvest. Solutions commonly used to address viticulture challenges rely on image processing techniques, which have achieved significant results. However, they require the installation of dedicated hardware in the vineyard, making it invasive and difficult to maintain. Moreover, accurate prediction is influenced by the interplay of climatic factors, especially temperature, and the impact of global warming, which are difficult to model using images. Another problem frequently found in GPHS prediction is the persistent issue of missing values in viticultural datasets, particularly in phenological stages. This paper proposes a semi-supervised approach that begins with a small set of labeled phenological stage examples and automatically generates new annotations for large volumes of unlabeled climatic data. This approach aims to address key challenges in phenological analysis. This novel climatic data-based approach offers advantages over common image processing methods, as it is non-intrusive, cost-effective, and adaptable for vineyards of various sizes and technological levels. To ensure the robustness of the proposed Pseudo-labelling strategy, we integrated it into eight machine-learning algorithms. We evaluated its performance across seven diverse datasets, each exhibiting varying percentages of missing values. Performance metrics, including the coefficient of determination (R2) and root-mean-square error (RMSE), are employed to assess the effectiveness of the models. The study demonstrates that integrating the proposed Pseudo-labeling strategy with supervised learning approaches significantly improves predictive accuracy. Moreover, the study shows that the proposed methodology can also be integrated with explainable artificial intelligence techniques to determine the importance of the input features. In particular, the investigation highlights that growing degree days are crucial for improved GPHS prediction.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2589721725000303-main.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 713.34 kB
Formato Adobe PDF
713.34 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1304547
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact