On a 2m-dimensional closed manifold, we investigate the existence of prescribed Q-curvature metrics with conical singularities. We present here a general existence and multiplicity result in the supercritical regime. To this end, we first carry out a blow-up analysis of a 2mth-order PDE associated to the problem, and then apply a variational argument of min-max type. For m > 1, this seems to be the first existence result for supercritical conic manifolds different from the sphere.

Prescribing Q-curvature on even-dimensional manifolds with conical singularities

Jevnikar A.;
2025-01-01

Abstract

On a 2m-dimensional closed manifold, we investigate the existence of prescribed Q-curvature metrics with conical singularities. We present here a general existence and multiplicity result in the supercritical regime. To this end, we first carry out a blow-up analysis of a 2mth-order PDE associated to the problem, and then apply a variational argument of min-max type. For m > 1, this seems to be the first existence result for supercritical conic manifolds different from the sphere.
File in questo prodotto:
File Dimensione Formato  
10.4171-rmi-1543.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 551.98 kB
Formato Adobe PDF
551.98 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1304991
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact