Background and purpose: In order to optimize the radiotherapy treatment and minimize toxicities, organs-at-risk (OARs) and clinical target volume (CTV) must be segmented. Deep Learning (DL) techniques show significant potential for performing this task effectively. The availability of a large single-institute data sample, combined with additional numerous multi-centric data, makes it possible to develop and validate a reliable CTV segmentation model. Materials and methods: Planning CT data of 1822 patients were available (861 from a single center for training and 961 from 8 centers for validation). A preprocessing step, aimed at standardizing all the images, followed by a 3D-Unet capable of segmenting both right and left CTVs was implemented. The metrics used to evaluate the performance were the Dice similarity coefficient (DSC), the Hausdorff distance (HD), and its 95th percentile variant (HD_95) and the Average Surface Distance (ASD). Results: The segmentation model achieved high performance on the validation set (DSC: 0.90; HD: 20.5 mm; HD_95: 10.0 mm; ASD: 2.1 mm; epoch 298). Furthermore, the model predicted smoother contours than the clinical ones along the cranial–caudal axis in both directions. When applied to internal and external data the same metrics demonstrated an overall agreement and model transferability for all but one (Inst 9) center. Conclusion:. A 3D-Unet for CTV segmentation trained on a large single institute cohort consisting of planning CTs and manual segmentations was built and externally validated, reaching high performance.

Development and external multicentric validation of a deep learning-based clinical target volume segmentation model for whole-breast radiotherapy

Moretti E.;
2025-01-01

Abstract

Background and purpose: In order to optimize the radiotherapy treatment and minimize toxicities, organs-at-risk (OARs) and clinical target volume (CTV) must be segmented. Deep Learning (DL) techniques show significant potential for performing this task effectively. The availability of a large single-institute data sample, combined with additional numerous multi-centric data, makes it possible to develop and validate a reliable CTV segmentation model. Materials and methods: Planning CT data of 1822 patients were available (861 from a single center for training and 961 from 8 centers for validation). A preprocessing step, aimed at standardizing all the images, followed by a 3D-Unet capable of segmenting both right and left CTVs was implemented. The metrics used to evaluate the performance were the Dice similarity coefficient (DSC), the Hausdorff distance (HD), and its 95th percentile variant (HD_95) and the Average Surface Distance (ASD). Results: The segmentation model achieved high performance on the validation set (DSC: 0.90; HD: 20.5 mm; HD_95: 10.0 mm; ASD: 2.1 mm; epoch 298). Furthermore, the model predicted smoother contours than the clinical ones along the cranial–caudal axis in both directions. When applied to internal and external data the same metrics demonstrated an overall agreement and model transferability for all but one (Inst 9) center. Conclusion:. A 3D-Unet for CTV segmentation trained on a large single institute cohort consisting of planning CTs and manual segmentations was built and externally validated, reaching high performance.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2405631625000545-main.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2 MB
Formato Adobe PDF
2 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1305290
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact