Top-quark pair production is observed in lead-lead ((Formula presented)) collisions at (Formula presented) at the Large Hadron Collider with the ATLAS detector. The data sample was recorded in 2015 and 2018, amounting to an integrated luminosity of (Formula presented). Events with exactly one electron and one muon and at least two jets are selected. Top-quark pair production is measured with an observed (expected) significance of 5.0 (4.1) standard deviations. The measured top-quark pair production cross section is (Formula presented), with a total relative uncertainty of 31%, and is consistent with theoretical predictions using a range of different nuclear parton distribution functions. The observation of this process consolidates the evidence of the existence of all quark flavors in the preequilibrium stage of the quark-gluon plasma at very high energy densities, similar to the conditions present in the early Universe.

Observation of (Formula presented) Production in Pb+Pb Collisions at (Formula presented) with the ATLAS Detector

Cobal M.;Giordani M. P.;Giugliarelli G.;Monzani S.;Panizzo G.;Primomo L.;
2025-01-01

Abstract

Top-quark pair production is observed in lead-lead ((Formula presented)) collisions at (Formula presented) at the Large Hadron Collider with the ATLAS detector. The data sample was recorded in 2015 and 2018, amounting to an integrated luminosity of (Formula presented). Events with exactly one electron and one muon and at least two jets are selected. Top-quark pair production is measured with an observed (expected) significance of 5.0 (4.1) standard deviations. The measured top-quark pair production cross section is (Formula presented), with a total relative uncertainty of 31%, and is consistent with theoretical predictions using a range of different nuclear parton distribution functions. The observation of this process consolidates the evidence of the existence of all quark flavors in the preequilibrium stage of the quark-gluon plasma at very high energy densities, similar to the conditions present in the early Universe.
File in questo prodotto:
File Dimensione Formato  
PhysRevLett.134.142301.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1305437
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact