Measurements of jet substructure are key to probing the energy frontier at colliders, and many of them use track-based observables which take advantage of the angular precision of tracking detectors. Theoretical calculations of track-based observables require ‘track functions’, which characterize the transverse momentum fraction rq carried by charged hadrons from a fragmenting quark or gluon. This letter presents a direct measurement of rq distributions in dijet events from the 140 fb−1 of proton–proton collisions at s=13 TeV recorded with the ATLAS detector. The data are corrected for detector effects using machine-learning methods. The scale evolution of the moments of the rq distribution is sensitive to non-linear renormalization group evolution equations of QCD, and is compared with analytic predictions. When incorporated into future theoretical calculations, these results will enable a precision program of theory-data comparison for track-based jet substructure observables.

Measurement of jet track functions in pp collisions at s=13 TeV with the ATLAS detector

Cobal M.;Giordani M. P.;Giugliarelli G.;Monzani S.;Panizzo G.;Primomo L.;
2025-01-01

Abstract

Measurements of jet substructure are key to probing the energy frontier at colliders, and many of them use track-based observables which take advantage of the angular precision of tracking detectors. Theoretical calculations of track-based observables require ‘track functions’, which characterize the transverse momentum fraction rq carried by charged hadrons from a fragmenting quark or gluon. This letter presents a direct measurement of rq distributions in dijet events from the 140 fb−1 of proton–proton collisions at s=13 TeV recorded with the ATLAS detector. The data are corrected for detector effects using machine-learning methods. The scale evolution of the moments of the rq distribution is sensitive to non-linear renormalization group evolution equations of QCD, and is compared with analytic predictions. When incorporated into future theoretical calculations, these results will enable a precision program of theory-data comparison for track-based jet substructure observables.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0370269325004411-main.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 6.93 MB
Formato Adobe PDF
6.93 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1309923
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact