In this paper, we generalize to arbitrary dimensions a one-dimensional equicoerciveness and Γ-convergence result for a second derivative perturbation of Perona-Malik type functionals. Our proof relies on a new density result in the space of special functions of bounded variation with vanishing diffuse gradient part. This provides a direction of investigation to derive approximation for functionals with discontinuities penalized with a «cohesive» energy, that is, whose cost depends on the actual opening of the discontinuity.
The Gamma-limit for singularly perturbed functionals of Perona-Malik type in arbitrary dimension
Bellettini, Giovanni;
2014-01-01
Abstract
In this paper, we generalize to arbitrary dimensions a one-dimensional equicoerciveness and Γ-convergence result for a second derivative perturbation of Perona-Malik type functionals. Our proof relies on a new density result in the space of special functions of bounded variation with vanishing diffuse gradient part. This provides a direction of investigation to derive approximation for functionals with discontinuities penalized with a «cohesive» energy, that is, whose cost depends on the actual opening of the discontinuity.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
2014_Bellettini_Chambolle_Goldman_M3AS.pdf
non disponibili
Licenza:
Non pubblico
Dimensione
352.96 kB
Formato
Adobe PDF
|
352.96 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


