We study the convergence of the singularly perturbed anisotropic, nonhomogeneous reaction-diffusion equation epsilon partial derivative(t)u - epsilon(2) div T degrees(x,del u) + f(u) - epsilon(c(1)/c(0))g = 0, where f is the derivative of a bistable quartic-like potential with unequal wells, T degrees(x,) is a nonlinear monotone operator homogeneous of degree one and g is a given forcing term. More precisely, we prove that an appropriate level set of the solution satisfies an O(epsilon(3)\log epsilon\(2)) error bound (in the Hausdorff distance) with respect to a hypersurface moving with the geometric law V = (c - epsilon kappa(phi))n(phi) + g-dependent terms, where n(phi) is the so-called Cahn-Hoffmann vector and kappa(phi) denotes the anisotropic mean curvature of the hypersurface. We also discuss the connection between the anisotropic reaction-diffusion equation and the bidomain model, which is described by a system of equations modeling the propagation of an electric stimulus in the cardiac tissue.

Convergence of front propagation for anisotropic bistable reaction-diffusion equations

Bellettini, Giovanni;
1997-01-01

Abstract

We study the convergence of the singularly perturbed anisotropic, nonhomogeneous reaction-diffusion equation epsilon partial derivative(t)u - epsilon(2) div T degrees(x,del u) + f(u) - epsilon(c(1)/c(0))g = 0, where f is the derivative of a bistable quartic-like potential with unequal wells, T degrees(x,) is a nonlinear monotone operator homogeneous of degree one and g is a given forcing term. More precisely, we prove that an appropriate level set of the solution satisfies an O(epsilon(3)\log epsilon\(2)) error bound (in the Hausdorff distance) with respect to a hypersurface moving with the geometric law V = (c - epsilon kappa(phi))n(phi) + g-dependent terms, where n(phi) is the so-called Cahn-Hoffmann vector and kappa(phi) denotes the anisotropic mean curvature of the hypersurface. We also discuss the connection between the anisotropic reaction-diffusion equation and the bidomain model, which is described by a system of equations modeling the propagation of an electric stimulus in the cardiac tissue.
File in questo prodotto:
File Dimensione Formato  
1997_Bellettini_ColliFranzone_Paolini_Asympt_Anal-1-17.pdf

non disponibili

Licenza: Non pubblico
Dimensione 7.39 MB
Formato Adobe PDF
7.39 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
1997_Bellettini_ColliFranzone_Paolini_Asympt_Anal-18-34.pdf

non disponibili

Licenza: Non pubblico
Dimensione 6.71 MB
Formato Adobe PDF
6.71 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1313878
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact