We prove convergence of piecewise polynomial collocation methods applied to periodic boundary value problems for functional differential equations with state-dependent delays. The state dependence of the delays leads to nonlinearities that are not locally Lipschitz continuous, preventing the direct application of general abstract discretization theoretic frameworks. We employ a weaker form of differentiability, which we call mild differentiability, to prove that a locally unique solution of the functional differential equation is approximated by the solution of the discretized problem with the expected order.

Boundary-Value Problems of Functional Differential Equations with State-Dependent Delays

Ando', Alessia
;
2025-01-01

Abstract

We prove convergence of piecewise polynomial collocation methods applied to periodic boundary value problems for functional differential equations with state-dependent delays. The state dependence of the delays leads to nonlinearities that are not locally Lipschitz continuous, preventing the direct application of general abstract discretization theoretic frameworks. We employ a weaker form of differentiability, which we call mild differentiability, to prove that a locally unique solution of the functional differential equation is approximated by the solution of the discretized problem with the expected order.
File in questo prodotto:
File Dimensione Formato  
Numerics_for_periodic_BVPs_of_sd_DDEs-1.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 440.95 kB
Formato Adobe PDF
440.95 kB Adobe PDF Visualizza/Apri
24m1711182-1.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 522.34 kB
Formato Adobe PDF
522.34 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1319042
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact