The solution of the Volterra integral equation with completely positive kernel y(t) + int_0^t b(t − s) y(s) ds = u0 + int_0^t b(t − s) g(s) ds, t ⩾ 0, is nonnegative and nonincreasing provided that g is nonincreasing and 0 ⩽ g(t) ⩽ u0 for any t > 0. We prove that under some additional hypotheses this property is inherited by the solution of the recurrence relation resulting from applying the trapezoidal method to this equation.

A stability analysis of trapezoidal methods for Volterra integral equationa with completely positive kernels

VERMIGLIO, Rossana;
1990-01-01

Abstract

The solution of the Volterra integral equation with completely positive kernel y(t) + int_0^t b(t − s) y(s) ds = u0 + int_0^t b(t − s) g(s) ds, t ⩾ 0, is nonnegative and nonincreasing provided that g is nonincreasing and 0 ⩽ g(t) ⩽ u0 for any t > 0. We prove that under some additional hypotheses this property is inherited by the solution of the recurrence relation resulting from applying the trapezoidal method to this equation.
File in questo prodotto:
File Dimensione Formato  
1990_JMMA_bellen_Jackiewicz_vermiglio_zennaro.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Non pubblico
Dimensione 1.81 MB
Formato Adobe PDF
1.81 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/667371
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact