We consider a p-order Runge-Kutta method K(i)(n) = f(x(n) + c(i)h, y(n) + hSIGMA(j=1)(nu)a(ij)K(j)(n)), i = 1,..., nu, y(n+1) = y(n) + hSIGMA(i = 1)(nu)b(i)K(i)(n)), for solving an initial-value problem for ordinary differential equations. The aim of this paper is to construct p-order interpolants by using the values furnished by the method on N successive intervals of integration. By using Lagrange interpolation one can obtain a p-order interpolant over p intervals, but we are interested in finding the minimum number of intervals needed to obtain this. We provide the conditions to be satisfied and we obtain an estimation of the number N. Some examples are given.

Multistep high order interpolants of Runge-Kutta methods

VERMIGLIO, Rossana
1993-01-01

Abstract

We consider a p-order Runge-Kutta method K(i)(n) = f(x(n) + c(i)h, y(n) + hSIGMA(j=1)(nu)a(ij)K(j)(n)), i = 1,..., nu, y(n+1) = y(n) + hSIGMA(i = 1)(nu)b(i)K(i)(n)), for solving an initial-value problem for ordinary differential equations. The aim of this paper is to construct p-order interpolants by using the values furnished by the method on N successive intervals of integration. By using Lagrange interpolation one can obtain a p-order interpolant over p intervals, but we are interested in finding the minimum number of intervals needed to obtain this. We provide the conditions to be satisfied and we obtain an estimation of the number N. Some examples are given.
File in questo prodotto:
File Dimensione Formato  
1993_jcam-vermiglio.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Non pubblico
Dimensione 4.31 MB
Formato Adobe PDF
4.31 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/667889
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact