This paper presents a theoretical and experimental study of the in-plane and out-of-plane coupling of a matched piezoelectric sensor/actuator pair bonded on a beam. Both the sensor and actuator are triangularly shaped polyvinylidene fluoride (PVDF) transducers and are intended to provide a compact sensor/actuator system for beam vibration control. The measured sensor-actuator frequency response function has shown an unpredicted increase in magnitude with frequency, which was found, to be due to in-plane vibration coupling. An analytical model has been developed to decompose the sensor-actuator response function into an in-plane contribution and an out-of-plane contribution. This in-plane coupling can limit the feedback control gains when a direct velocity feedback control is applied. A method called the jωs compensation method is proposed to identify the effect of the in-plane vibration coupling at low frequencies. Even after this compensation, however, there was unexpected strong out-of-plane coupling at even modes, which may have been caused by a lack of accuracy in the shaping of the PVDF sensor and actuator. Numerical simulations have confirmed the sensitivity of the matched sensor/actuator pair with shaping errors.

Coupling analysis of a matched piezoelectric sensor and actuator pair for vibration control of a smart beam

GARDONIO, Paolo;
2002-01-01

Abstract

This paper presents a theoretical and experimental study of the in-plane and out-of-plane coupling of a matched piezoelectric sensor/actuator pair bonded on a beam. Both the sensor and actuator are triangularly shaped polyvinylidene fluoride (PVDF) transducers and are intended to provide a compact sensor/actuator system for beam vibration control. The measured sensor-actuator frequency response function has shown an unpredicted increase in magnitude with frequency, which was found, to be due to in-plane vibration coupling. An analytical model has been developed to decompose the sensor-actuator response function into an in-plane contribution and an out-of-plane contribution. This in-plane coupling can limit the feedback control gains when a direct velocity feedback control is applied. A method called the jωs compensation method is proposed to identify the effect of the in-plane vibration coupling at low frequencies. Even after this compensation, however, there was unexpected strong out-of-plane coupling at even modes, which may have been caused by a lack of accuracy in the shaping of the PVDF sensor and actuator. Numerical simulations have confirmed the sensitivity of the matched sensor/actuator pair with shaping errors.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/668699
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 19
social impact