Defining the Kernel of a hypergroup morphism as the reprocal image of the intersection of all ultra-closed subhypergroups of its codomain we we introduce the notion of exact sequence of hypergroups. If some natural conditions (which are always valid for groups) are satisfied then the existence of a ker-coker sequence in a category of hypergroups is established. Weuse these results to found a homology in a supercategory of the category of (not necessarily commutative) groups.

Hypergroupes de type U et homologie de complexes

FRENI, Domenico;
1996-01-01

Abstract

Defining the Kernel of a hypergroup morphism as the reprocal image of the intersection of all ultra-closed subhypergroups of its codomain we we introduce the notion of exact sequence of hypergroups. If some natural conditions (which are always valid for groups) are satisfied then the existence of a ker-coker sequence in a category of hypergroups is established. Weuse these results to found a homology in a supercategory of the category of (not necessarily commutative) groups.
File in questo prodotto:
File Dimensione Formato  
HYPERGROUPES DE TYPE U ET HOMOLOGIE DE COMPLEXES.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 1.69 MB
Formato Adobe PDF
1.69 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/669201
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact