Six multiparous Holstein cows were used in a 6 x 6 Latin square to investigate the ability of the Cornell Net Carbohydrate and Protein System to predict accurately rumen microbial yield, plasma urea N, and milk urea N. Estimations for microbial protein yield were compared with the measured excretion of purine derivative N in urine. A 3 x 2 factorial arrangement of treatments was adopted. Three concentrations of a rumen-undegradable protein (RUP) supplement (4.5, 14.9, and 29.1% of dry matter intake) and two levels of feed restriction (90 and 80% of ad libitum intake) were the corresponding factors. No effect of concentration of RUP supplement or feed restriction was detected on the excretion of purine derivative N in urine (mean, 18.5 g/d). Conversely, the Cornell system predicted a linear decrease in metabolizable protein from bacteria as the concentration of the RUP supplement increased. The Cornell system also predicted a significant reduction in metabolizable protein of microbial origin as feed restriction was increased. Measured values and values derived from the Cornell system for plasma and milk urea N increased linearly as the concentration of the RUP supplement increased. The Cornell system overpredicted milk urea N for cows consuming the highest RUP concentration. Predictions by the Cornell Net Carbohydrate and Protein System were of limited value because the empirical nature of the model is insufficiently rigorous to yield accurate predictions under the conditions described herein.
Effects of rumen-undegradable protein and feed intake on purine derivative and urea nitrogen: Comparison with predictions from the Cornell net carbohydrate and protein system
SUSMEL, Piero
1998-01-01
Abstract
Six multiparous Holstein cows were used in a 6 x 6 Latin square to investigate the ability of the Cornell Net Carbohydrate and Protein System to predict accurately rumen microbial yield, plasma urea N, and milk urea N. Estimations for microbial protein yield were compared with the measured excretion of purine derivative N in urine. A 3 x 2 factorial arrangement of treatments was adopted. Three concentrations of a rumen-undegradable protein (RUP) supplement (4.5, 14.9, and 29.1% of dry matter intake) and two levels of feed restriction (90 and 80% of ad libitum intake) were the corresponding factors. No effect of concentration of RUP supplement or feed restriction was detected on the excretion of purine derivative N in urine (mean, 18.5 g/d). Conversely, the Cornell system predicted a linear decrease in metabolizable protein from bacteria as the concentration of the RUP supplement increased. The Cornell system also predicted a significant reduction in metabolizable protein of microbial origin as feed restriction was increased. Measured values and values derived from the Cornell system for plasma and milk urea N increased linearly as the concentration of the RUP supplement increased. The Cornell system overpredicted milk urea N for cows consuming the highest RUP concentration. Predictions by the Cornell Net Carbohydrate and Protein System were of limited value because the empirical nature of the model is insufficiently rigorous to yield accurate predictions under the conditions described herein.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.