We estimate the number of moduli of an n-dimensional variety X through the variation of its Albanese morphism. Refining upon our methods, we work out the classical Castelnuovo bound concerning the number m of moduli of irregular surfaces with birational Albanese map. We interpret our variation by means of higher Abel-Jacobi mappings theory and under the only hypothesis that X has a generically finite morphism to an Abelian variety A, we can bound from below the geometrical genus pg(X) in terms of the dimensions of A and X. Using the same framework, we characterize the hyperelliptic locus in Mg as the only close subvariety ℋ inside the moduli space of curves with dim ℋ ≥ 2g - 1 and torsion Abel-Jacobi image of the Ceresa cycle at its generic point.

Variations of the Albanese Morphism

ZUCCONI, Francesco
2003-01-01

Abstract

We estimate the number of moduli of an n-dimensional variety X through the variation of its Albanese morphism. Refining upon our methods, we work out the classical Castelnuovo bound concerning the number m of moduli of irregular surfaces with birational Albanese map. We interpret our variation by means of higher Abel-Jacobi mappings theory and under the only hypothesis that X has a generically finite morphism to an Abelian variety A, we can bound from below the geometrical genus pg(X) in terms of the dimensions of A and X. Using the same framework, we characterize the hyperelliptic locus in Mg as the only close subvariety ℋ inside the moduli space of curves with dim ℋ ≥ 2g - 1 and torsion Abel-Jacobi image of the Ceresa cycle at its generic point.
File in questo prodotto:
File Dimensione Formato  
PiZu.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 736.62 kB
Formato Adobe PDF
736.62 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/672446
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact