Si(x)Ge1-x alloys are studied with a new method based on density-functional theory and Monte Carlo sampling. Using perturbation theory with respect to the virtual crystal, we are able to map the alloy onto a lattice gas with long-range interactions, which are determined from first principles. Monte Carlo simulations show that Si(x)Ge1-x is a model random alloy with a miscibility gap below almost-equal-to 170 K. The bond-length distribution displays three well-defined peaks whose positions depend on composition, but not on temperature. The resulting lattice parameter follows Vegard's law very closely.
STRUCTURE AND THERMODYNAMICS OF SIXGE1-X ALLOYS FROM ABINITIO MONTE-CARLO SIMULATIONS
GIANNOZZI, Paolo;
1991-01-01
Abstract
Si(x)Ge1-x alloys are studied with a new method based on density-functional theory and Monte Carlo sampling. Using perturbation theory with respect to the virtual crystal, we are able to map the alloy onto a lattice gas with long-range interactions, which are determined from first principles. Monte Carlo simulations show that Si(x)Ge1-x is a model random alloy with a miscibility gap below almost-equal-to 170 K. The bond-length distribution displays three well-defined peaks whose positions depend on composition, but not on temperature. The resulting lattice parameter follows Vegard's law very closely.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.