In classical propositional logic, a theory T is prime (i.e., for every pair of formulas F,G, either T⊢F→G or T⊢G→F) iff it is complete. In Lukasiewicz infinite-valued logic the two notions split, completeness being stronger than primeness. Using toric desingularization algorithms and the fine structure of prime ideal spaces of free ℓ-groups, in this paper we shall characterize prime theories in infinite-valued logic. We will show that recursively enumerable (r.e.) prime theories over a finite number of variables are decidable, and we will exhibit an example of an undecidable r.e. prime theory over countably many variables.

Decidable and undecidable prime theories in infinite-valued logic

PANTI, Giovanni;
2001-01-01

Abstract

In classical propositional logic, a theory T is prime (i.e., for every pair of formulas F,G, either T⊢F→G or T⊢G→F) iff it is complete. In Lukasiewicz infinite-valued logic the two notions split, completeness being stronger than primeness. Using toric desingularization algorithms and the fine structure of prime ideal spaces of free ℓ-groups, in this paper we shall characterize prime theories in infinite-valued logic. We will show that recursively enumerable (r.e.) prime theories over a finite number of variables are decidable, and we will exhibit an example of an undecidable r.e. prime theory over countably many variables.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/674315
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact