We study a one-step method for delay differential equations, which is equivalent to an implicit Runge-Kutta method. It approximates the solution in the whole interval with a piecewise polynomial of fixed degree n. For an appropiate choice of the mesh points, it provides uniform convergence 0(hn+1) and the superconvergence 0(h2n) at the nodes.
Titolo: | A one-step subregion method for delay differential equations |
Autori: | |
Data di pubblicazione: | 1985 |
Rivista: | |
Abstract: | We study a one-step method for delay differential equations, which is equivalent to an implicit Runge-Kutta method. It approximates the solution in the whole interval with a piecewise polynomial of fixed degree n. For an appropiate choice of the mesh points, it provides uniform convergence 0(hn+1) and the superconvergence 0(h2n) at the nodes. |
Handle: | http://hdl.handle.net/11390/675515 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
art%3A10.1007%2FBF02575897.pdf | Documento in Post-print | Non pubblico | Accesso ristretto Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.