In this paper, a system for real-time object recognition and tracking for remote video surveillance is presented. In order to meet real-time requirements, a unique feature, i.e., the statistical morphological skeleton, which achieves low computational complexity, accuracy of localization, and noise robustness has been considered for both object recognition and tracking. Recognition is obtained by comparing an analytical approximation of the skeleton function extracted from the analyzed image with that obtained from model objects stored into a database. Tracking is performed by applying an extended Kalman filter to a set of observable quantities derived from the detected skeleton and other geometric characteristics of the moving object, Several experiments are shown to illustrate the validity of the proposed method and to demonstrate its usefulness in video-based applications.

Object recognition and tracking for remote video surveillance

FORESTI, Gian Luca
1999

Abstract

In this paper, a system for real-time object recognition and tracking for remote video surveillance is presented. In order to meet real-time requirements, a unique feature, i.e., the statistical morphological skeleton, which achieves low computational complexity, accuracy of localization, and noise robustness has been considered for both object recognition and tracking. Recognition is obtained by comparing an analytical approximation of the skeleton function extracted from the analyzed image with that obtained from model objects stored into a database. Tracking is performed by applying an extended Kalman filter to a set of observable quantities derived from the detected skeleton and other geometric characteristics of the moving object, Several experiments are shown to illustrate the validity of the proposed method and to demonstrate its usefulness in video-based applications.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11390/678881
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 105
  • ???jsp.display-item.citation.isi??? 87
social impact