We prove that the homogenization in Calculus of Variations of the functional represented by the integrand f (x, xi) = a(x) \xi\(4), where xi epsilon R(2) and a is a measurable periodic and positive real valued function on R(2), has an integrand f(infinity):R(2) --> R which is not a polynomial. This result turns out to be a counter-example to analyticity of the Gamma-limit of a sequence of functionals with analytic integrand.

A COUNTEREXAMPLE IN HOMOGENIZATION OF FUNCTIONALS WITH ANALYTIC INTEGRAND

CABIB, Elio
1994-01-01

Abstract

We prove that the homogenization in Calculus of Variations of the functional represented by the integrand f (x, xi) = a(x) \xi\(4), where xi epsilon R(2) and a is a measurable periodic and positive real valued function on R(2), has an integrand f(infinity):R(2) --> R which is not a polynomial. This result turns out to be a counter-example to analyticity of the Gamma-limit of a sequence of functionals with analytic integrand.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/679205
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact