Various results appear in the literature for deriving existence and uniqueness of fixed points for endofunctors on categories of complete metric spaces. All these results are proved for contracting functors which satisfy some further requirements, depending on the category in question. Following a new kind of approach, based on the notion of eta-isometry, we show that the sole hypothesis of contractivity is enough for proving existence and uniqueness of fixed points for endofunctors on the category of compact metric spaces and embedding-projection pairs.

A FIXED-POINT THEOREM IN A CATEGORY OF COMPACT METRIC-SPACES

ALESSI, Fabio;
1995-01-01

Abstract

Various results appear in the literature for deriving existence and uniqueness of fixed points for endofunctors on categories of complete metric spaces. All these results are proved for contracting functors which satisfy some further requirements, depending on the category in question. Following a new kind of approach, based on the notion of eta-isometry, we show that the sole hypothesis of contractivity is enough for proving existence and uniqueness of fixed points for endofunctors on the category of compact metric spaces and embedding-projection pairs.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/679681
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
social impact