We consider a linear system with additive noise in Hilbert space and minimize a convex functional associated with this process. A necessary and sufficient condition for a control to be optimal is derived by evaluating the subdifferential of the cost function. Then the subdifferential of the value function is characterized. Finally using these results and a conditional value function, optimal controls are characterized as a feedback law in terms of the value function.

Optimality principle and synthesis for a stochastic control problem in Hilbert spaces.

GORNI, Gianluca
1984-01-01

Abstract

We consider a linear system with additive noise in Hilbert space and minimize a convex functional associated with this process. A necessary and sufficient condition for a control to be optimal is derived by evaluating the subdifferential of the cost function. Then the subdifferential of the value function is characterized. Finally using these results and a conditional value function, optimal controls are characterized as a feedback law in terms of the value function.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/680664
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact