Let f be a Lipschitz function of N real variables with values into R^k. Let Ω be a bounded domain in $R^h$,and take $1<p<\infty$. The Nemitsky operator $T$ associated with $f$ is defined, for $u$ in the Sobolev space $W^{1,p}(Ω,R^N)$, by $Tu=f o u$. When $N=1$, $T$ is continuous from $W^{1,p}(Ω,R^N)$ into $W^{1,p}(Ω,R^k)$. In this paper a counterexample is given to show that the above is not true when $N=2$. However, additional conditions on $f$ are provided which ensure that $T$ does map $W^{1,p}(Ω,R^N)$ continuously into $W^{1,p}(Ω,R^k)$. In particular this is so when $f$ is Lipschitz with first order derivatives which are continuous outside a closed singular set with empty interior.

ON THE CONTINUITY OF THE NEMITSKY OPERATOR INDUCED BY A LIPSCHITZ CONTINUOUS MAP

MUSINA, Roberta
1991

Abstract

Let f be a Lipschitz function of N real variables with values into R^k. Let Ω be a bounded domain in $R^h$,and take $1
File in questo prodotto:
File Dimensione Formato  
1991_NEMITSKI.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11390/681331
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact