We present the different constructive definitions of real number that can be found in the literature. Using domain theory we analyse the notion of computability that is substantiated by these definitions and we give a definition of computability for real numbers and for functions acting on them. This definition of computability turns out to be equivalent to other definitions given in the literature using different methods. Domain theory is a useful tool to study higher order computability on real numbers. An interesting connection between Scott-topology and the standard topologies on the real line and on the space of continuous functions on reals is stated. An important result in this paper is the proof that every computable functional on real numbers is continuous w.r.t. the compact open topology on the function space.

Real Number Computability and Domain Theory

DI GIANANTONIO, Pietro
1996-01-01

Abstract

We present the different constructive definitions of real number that can be found in the literature. Using domain theory we analyse the notion of computability that is substantiated by these definitions and we give a definition of computability for real numbers and for functions acting on them. This definition of computability turns out to be equivalent to other definitions given in the literature using different methods. Domain theory is a useful tool to study higher order computability on real numbers. An interesting connection between Scott-topology and the standard topologies on the real line and on the space of continuous functions on reals is stated. An important result in this paper is the proof that every computable functional on real numbers is continuous w.r.t. the compact open topology on the function space.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/681520
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 29
social impact