With respect to a closure operator C in a topological category X, subcategories of X are defined by using C in terms of separation axioms such as T_0 and T_1. Then the epis are found these categories. By taking a particular closure operator K, results about epis and co-wellpoweredness are obtained in case X=Fil, Lim, PsT, PrT, some of which are not true when X is the category of all topological spaces.

Epis in categories of convergence spaces

DIKRANJAN, Dikran;
1993-01-01

Abstract

With respect to a closure operator C in a topological category X, subcategories of X are defined by using C in terms of separation axioms such as T_0 and T_1. Then the epis are found these categories. By taking a particular closure operator K, results about epis and co-wellpoweredness are obtained in case X=Fil, Lim, PsT, PrT, some of which are not true when X is the category of all topological spaces.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/681583
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact