In this paper, a hierarchical system, in which each level is composed by a neural-based classifier, is proposed to recognize objects in underwater images. The system has been designed to help an autonomous underwater vehicle in sea-bottom survey operations, like pipeline inspections. The input image is divided into square regions (macro-pixels) and a neural tree is used to classify each region into different object classes (pipeline, sea-bottom, or anodes). Each macro-pixel is then analyzed according to some geometric and environment constraints: macro-pixels with doubt classification are divided into four parts and re-classified. The process is iterated until the desired accuracy is reached. Experimental results, which have been performed on a large set of real underwater images acquired in different sea environments, demonstrate the robustness and the accuracy of the proposed system.

A hierarchical classification system for object recognition in underwater environments

FORESTI, Gian Luca;
2002

Abstract

In this paper, a hierarchical system, in which each level is composed by a neural-based classifier, is proposed to recognize objects in underwater images. The system has been designed to help an autonomous underwater vehicle in sea-bottom survey operations, like pipeline inspections. The input image is divided into square regions (macro-pixels) and a neural tree is used to classify each region into different object classes (pipeline, sea-bottom, or anodes). Each macro-pixel is then analyzed according to some geometric and environment constraints: macro-pixels with doubt classification are divided into four parts and re-classified. The process is iterated until the desired accuracy is reached. Experimental results, which have been performed on a large set of real underwater images acquired in different sea environments, demonstrate the robustness and the accuracy of the proposed system.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11390/682528
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 18
social impact