We study the diophantine equation $f(u(n),y)=0$, where $f(x,y)$ is a polynomial with integral coefficients and $u:N\to Z$ is a sequence expressed as a power sum with integral bases. We completely classify the cases with infinitely many solutions. We also solve the divisibility problem of deciding when can the values of such a power sum divide infinitely often the values of another power sum.

Diophantine equations with power sums and Universal Hilbert Sets

CORVAJA, Pietro;
1998-01-01

Abstract

We study the diophantine equation $f(u(n),y)=0$, where $f(x,y)$ is a polynomial with integral coefficients and $u:N\to Z$ is a sequence expressed as a power sum with integral bases. We completely classify the cases with infinitely many solutions. We also solve the divisibility problem of deciding when can the values of such a power sum divide infinitely often the values of another power sum.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/683276
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 48
social impact