The author continues the study of exchange hypergroups that he initiated in a previous work. A hypergroup H is called an exchange hypergroup if, for all A⊆H, x∈⟨A∪{y}⟩ and x∉⟨A⟩⇒y∈⟨A∪{x}⟩, where ⟨B⟩ denotes the intersection of all closed subhypergroups of H containing B. After proving some results of a general nature the author studies the relations between exchange hypergroups and the HG-hypergroups introduced by M. De Salvo . Finally he gives a characterization of exchange commutative groups: they are direct sums of cyclic groups of prime order.

Sur les hypergroupes cambistes

FRENI, Domenico
1985-01-01

Abstract

The author continues the study of exchange hypergroups that he initiated in a previous work. A hypergroup H is called an exchange hypergroup if, for all A⊆H, x∈⟨A∪{y}⟩ and x∉⟨A⟩⇒y∈⟨A∪{x}⟩, where ⟨B⟩ denotes the intersection of all closed subhypergroups of H containing B. After proving some results of a general nature the author studies the relations between exchange hypergroups and the HG-hypergroups introduced by M. De Salvo . Finally he gives a characterization of exchange commutative groups: they are direct sums of cyclic groups of prime order.
File in questo prodotto:
File Dimensione Formato  
SUR LES IPERGROUPES CAMBISTES.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/683280
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact