A group $G$ is said to be an $M\sp*$-group if all subgroups of $G$ are quasinormal and $G$ is quaternionfree. Using Iwasawa's characterization of $M\sp*$-groups the author gives an elegant and unified proof of the following theorem: If $G$ is an $M\sp*$-group, then there exists an abelian group $A$ such that the lattices of subgroups of $A$ and $G$ are isomorphic. [J.Chvalina (Brno)]

A Simple Proof of Baer's and Sato's Theorems on Lattice Isomorphisms between Groups

MAINARDIS, Mario
1992-01-01

Abstract

A group $G$ is said to be an $M\sp*$-group if all subgroups of $G$ are quasinormal and $G$ is quaternionfree. Using Iwasawa's characterization of $M\sp*$-groups the author gives an elegant and unified proof of the following theorem: If $G$ is an $M\sp*$-group, then there exists an abelian group $A$ such that the lattices of subgroups of $A$ and $G$ are isomorphic. [J.Chvalina (Brno)]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/684466
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact