From the viewpoint of the calculus of variations, the perturbed Kazdan-Warner problem: (1) −∆u+λu=k(x)u^{p−1}, u>0 in R^n, u→0 at ∞, where n≥3 and p>1 is subcritical. Problem (1) is studied with regard of the effect of the set M on topology of the energy sub levels: in the main results it is shown that the Lyusternik-Schnirelman category of M can affect the number of positive solutions to (1) in case p is close enough to the critical Sobolev exponent.
Multiple positive solutions of a scalar field equation in R^n
MUSINA, Roberta
1996-01-01
Abstract
From the viewpoint of the calculus of variations, the perturbed Kazdan-Warner problem: (1) −∆u+λu=k(x)u^{p−1}, u>0 in R^n, u→0 at ∞, where n≥3 and p>1 is subcritical. Problem (1) is studied with regard of the effect of the set M on topology of the energy sub levels: in the main results it is shown that the Lyusternik-Schnirelman category of M can affect the number of positive solutions to (1) in case p is close enough to the critical Sobolev exponent.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1996_TMNA96.pdf
non disponibili
Tipologia:
Altro materiale allegato
Licenza:
Non pubblico
Dimensione
241.68 kB
Formato
Adobe PDF
|
241.68 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.