An experiment was designed to determine the response of milk protein production and N utilization in dairy cows to supplementation of a predominantly rumen-undegradable protein (RUP) mixture with a fixed amino acid (AA) pattern and the response to the amount of feed intake. The experiment was designed as a 6 x 6 Latin square with a 3 x 2 factorial arrangement of treatments. The factors were three concentrations of RUP supplement (4.5, 14.9, and 29.1% of dry matter intake) and two levels of feed intake restriction (10 and 20%) of the basal diet. The supplement was designed to approximate a postruminal Al pattern that was similar to bovine caseins for Met, Lys, Phe, His, and Thr. Measurements were made during the last 5 d of each 21-d period. Milk protein production responded linearly as the concentration of RUP supplement in the treatment diet increased within the given range. The difference in feed intake restriction did not affect milk protein production. Efficiency of N utilization for milk production exceeded 30% for cows fed the lowest RUP supplement. Results indicated that there is an opportunity to increase milk protein production by using RUP formulations that are balanced for AA while minimizing waste N excretion.
Effects of rumen-undegradable protein and feed intake on nitrogen balance and milk protein production in dairy cows
SUSMEL, Piero;
1998-01-01
Abstract
An experiment was designed to determine the response of milk protein production and N utilization in dairy cows to supplementation of a predominantly rumen-undegradable protein (RUP) mixture with a fixed amino acid (AA) pattern and the response to the amount of feed intake. The experiment was designed as a 6 x 6 Latin square with a 3 x 2 factorial arrangement of treatments. The factors were three concentrations of RUP supplement (4.5, 14.9, and 29.1% of dry matter intake) and two levels of feed intake restriction (10 and 20%) of the basal diet. The supplement was designed to approximate a postruminal Al pattern that was similar to bovine caseins for Met, Lys, Phe, His, and Thr. Measurements were made during the last 5 d of each 21-d period. Milk protein production responded linearly as the concentration of RUP supplement in the treatment diet increased within the given range. The difference in feed intake restriction did not affect milk protein production. Efficiency of N utilization for milk production exceeded 30% for cows fed the lowest RUP supplement. Results indicated that there is an opportunity to increase milk protein production by using RUP formulations that are balanced for AA while minimizing waste N excretion.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.