Mammalian telomeres have epigenetic marks of constitutive heterochromatin. Here, we study the impact of telomere length on the maintenance of heterochromatin domains at telomeres. Telomerase-deficient Terc–/– mice with short telomeres show decreased trimethylation of histone 3 at Lys9 (H3K9) and histone 4 at Lys20 (H4K20) in telomeric and subtelomeric chromatin as well as decreased CBX3 binding accompanied by increased H3 and H4 acetylation at these regions. Subtelomeric DNA methylation is also decreased in conjunction with telomere shortening in Terc–/– mice. In contrast, telomere repeat factors 1 and 2 show normal binding to telomeres independent of telomere length. These results indicate that loss of telomeric repeats leads to a change in the architecture of telomeric and subtelomeric chromatin consisting of loss of heterochromatic features leading to a more ‘open’ chromatin state. These observations highlight the importance of telomere repeats in the establishment of constitutive heterochromatin at mammalian telomeres and subtelomeres and point to histone modifications as important in counting telomere repeats.

Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres

BENETTI, Roberta;
2007-01-01

Abstract

Mammalian telomeres have epigenetic marks of constitutive heterochromatin. Here, we study the impact of telomere length on the maintenance of heterochromatin domains at telomeres. Telomerase-deficient Terc–/– mice with short telomeres show decreased trimethylation of histone 3 at Lys9 (H3K9) and histone 4 at Lys20 (H4K20) in telomeric and subtelomeric chromatin as well as decreased CBX3 binding accompanied by increased H3 and H4 acetylation at these regions. Subtelomeric DNA methylation is also decreased in conjunction with telomere shortening in Terc–/– mice. In contrast, telomere repeat factors 1 and 2 show normal binding to telomeres independent of telomere length. These results indicate that loss of telomeric repeats leads to a change in the architecture of telomeric and subtelomeric chromatin consisting of loss of heterochromatic features leading to a more ‘open’ chromatin state. These observations highlight the importance of telomere repeats in the establishment of constitutive heterochromatin at mammalian telomeres and subtelomeres and point to histone modifications as important in counting telomere repeats.
File in questo prodotto:
File Dimensione Formato  
Nature Genetics KO tel.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 438.02 kB
Formato Adobe PDF
438.02 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/689189
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 280
  • ???jsp.display-item.citation.isi??? 274
social impact