We prove that the maximal order type of the wqo of linear orders of finite Hausdorff rank under embeddability is \varphi_2(0), the first fixed point of the \epsilon-function. We then show that Fraïssé's conjecture restricted to linear orders of finite Hausdorff rank is provable in ACA_0^+ + "\varphi_2(0) is well-ordered" and, over RCA_0, implies ACA_0' + "\varphi_2(0) is well-ordered".
On Fraïssé’s conjecture for linear orders of finite Hausdorff rank
MARCONE, Alberto Giulio;
2009-01-01
Abstract
We prove that the maximal order type of the wqo of linear orders of finite Hausdorff rank under embeddability is \varphi_2(0), the first fixed point of the \epsilon-function. We then show that Fraïssé's conjecture restricted to linear orders of finite Hausdorff rank is provable in ACA_0^+ + "\varphi_2(0) is well-ordered" and, over RCA_0, implies ACA_0' + "\varphi_2(0) is well-ordered".File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
FraisseFiniteRank APAL.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Non pubblico
Dimensione
899.61 kB
Formato
Adobe PDF
|
899.61 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.