Let \preceq_R be the preorder of embeddability between countable linear orders colored with elements of Rado's partial order (a standard example of a wqo which is not a bqo). We show that \preceq_R has fairly high complexity with respect to Borel reducibility (e.g.\ if P is a Borel preorder then P \leq_B \preceq_R), although its exact classification remains open.

Coloring linear orders with Rado's partial order

MARCONE, Alberto Giulio;
2007-01-01

Abstract

Let \preceq_R be the preorder of embeddability between countable linear orders colored with elements of Rado's partial order (a standard example of a wqo which is not a bqo). We show that \preceq_R has fairly high complexity with respect to Borel reducibility (e.g.\ if P is a Borel preorder then P \leq_B \preceq_R), although its exact classification remains open.
File in questo prodotto:
File Dimensione Formato  
Rado MLQ.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 267.74 kB
Formato Adobe PDF
267.74 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/689915
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact