In this paper we introduce a tree structured self-organizing network, called the Growing Hierarchical Tree SOM (GHTSOM), that combines unsupervised learning with a dynamic topology for hierarchical classification of unlabelled data sets. The main feature of the proposed model is a SOM-like self-organizing process that allows the network to adapt the topology of each layer of the hierarchy to the characteristics of the training set. In particular the self-organization is obtained in two steps: the first one concerns the learning phase and is finalized with the creation of a tree of SOMs, while the second one is in regard to the clustering phase and provides the formation of classes for each level of the tree (hence self-organization not only for training but also for the creation of topological connections). As a result the network works without the need for user-defined parameters. Experimental results are proposed on both synthetic and real data sets. (c) 2006 Elsevier Ltd. All rights reserved.

Growing Hierarchical Tree SOM: an Unsupervised Neural Network with Dynamic Topology

FORESTI, Gian Luca
2006-01-01

Abstract

In this paper we introduce a tree structured self-organizing network, called the Growing Hierarchical Tree SOM (GHTSOM), that combines unsupervised learning with a dynamic topology for hierarchical classification of unlabelled data sets. The main feature of the proposed model is a SOM-like self-organizing process that allows the network to adapt the topology of each layer of the hierarchy to the characteristics of the training set. In particular the self-organization is obtained in two steps: the first one concerns the learning phase and is finalized with the creation of a tree of SOMs, while the second one is in regard to the clustering phase and provides the formation of classes for each level of the tree (hence self-organization not only for training but also for the creation of topological connections). As a result the network works without the need for user-defined parameters. Experimental results are proposed on both synthetic and real data sets. (c) 2006 Elsevier Ltd. All rights reserved.
File in questo prodotto:
File Dimensione Formato  
Neural Network Forti Foresti.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 1.57 MB
Formato Adobe PDF
1.57 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/690512
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 34
social impact