This paper deals with bisimulation quantifiers logic BQL, that is, the extension of propositional dynamic logic PDL with the so-called “bisimulation quantifiers”. This logic is expressively equivalent to the -calculus (an extension of modal logic with extremal fixpoints), albeit its formulas are easier to understand. In this work we provide a complete axiomatization of BQL, based on certain normal form results for the mu-calculus obtained by Janin and Walukiewicz.

An axiomatization of Bisimulation Quantifiers via the mu-calculus,

D'AGOSTINO, Giovanna;
2005-01-01

Abstract

This paper deals with bisimulation quantifiers logic BQL, that is, the extension of propositional dynamic logic PDL with the so-called “bisimulation quantifiers”. This logic is expressively equivalent to the -calculus (an extension of modal logic with extremal fixpoints), albeit its formulas are easier to understand. In this work we provide a complete axiomatization of BQL, based on certain normal form results for the mu-calculus obtained by Janin and Walukiewicz.
File in questo prodotto:
File Dimensione Formato  
science.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Non pubblico
Dimensione 346.48 kB
Formato Adobe PDF
346.48 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/691196
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 10
social impact