Iron ranks fourth in the sequence of abundance of the elements in the Earth's crust, but its low bio-availability often limits plant growth. When present in suboptimal amounts, the acquisition of iron by plants is aided by a suite of responses, comprising molecular and developmental changes that facilitate the uptake of iron from sparingly soluble pools. The expression of genes involved in the mobilization of iron (CsHA1), the reduction of ferric chelates (CsFRO1), and in the uptake of ferrous iron (CsIRT1) was investigated in epidermal cells of Fe-sufficient and Fe-deficient cucumber (Cucumis sativum L.) roots using the Laser Microdissection and Pressure Catapulting (LMPC) method. Growing plants hydroponically in media deprived of iron induced the differentiation of almost all epidermal cells into root hairs. No root hairs were formed under iron-replete conditions. The formation of root hairs in response to Fe starvation was associated with a dramatic increase in message levels of CsFRO1, CsIRT1, and the iron-inducible H+-ATPase isoform CsHA1, when compared to epidermal cells of Fe-sufficient plants. On the contrary, transcripts of a housekeeping ATPase isoform, CsHA2, were not detected in root hairs, suggesting that Fe-deficiency-induced acidification is predominantly mediated by CsHA1. These data show that the formation of root hairs in response to iron deficiency is associated with cell-specific accumulation of transcripts that are involved in iron acquisition. The results also show that this includes the differential regulation of ATPase isoforms with similar function, but supposedly different characteristics, to counteract the imbalance in nutrient supply efficiently.

Laser microdissection-assisted analysis of the functional fate of iron deficiency-induced root hairs in cucumber

SANTI, Simonetta;
2008-01-01

Abstract

Iron ranks fourth in the sequence of abundance of the elements in the Earth's crust, but its low bio-availability often limits plant growth. When present in suboptimal amounts, the acquisition of iron by plants is aided by a suite of responses, comprising molecular and developmental changes that facilitate the uptake of iron from sparingly soluble pools. The expression of genes involved in the mobilization of iron (CsHA1), the reduction of ferric chelates (CsFRO1), and in the uptake of ferrous iron (CsIRT1) was investigated in epidermal cells of Fe-sufficient and Fe-deficient cucumber (Cucumis sativum L.) roots using the Laser Microdissection and Pressure Catapulting (LMPC) method. Growing plants hydroponically in media deprived of iron induced the differentiation of almost all epidermal cells into root hairs. No root hairs were formed under iron-replete conditions. The formation of root hairs in response to Fe starvation was associated with a dramatic increase in message levels of CsFRO1, CsIRT1, and the iron-inducible H+-ATPase isoform CsHA1, when compared to epidermal cells of Fe-sufficient plants. On the contrary, transcripts of a housekeeping ATPase isoform, CsHA2, were not detected in root hairs, suggesting that Fe-deficiency-induced acidification is predominantly mediated by CsHA1. These data show that the formation of root hairs in response to iron deficiency is associated with cell-specific accumulation of transcripts that are involved in iron acquisition. The results also show that this includes the differential regulation of ATPase isoforms with similar function, but supposedly different characteristics, to counteract the imbalance in nutrient supply efficiently.
File in questo prodotto:
File Dimensione Formato  
Santi&Schmidt JEB08.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 711.15 kB
Formato Adobe PDF
711.15 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/696196
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 68
  • ???jsp.display-item.citation.isi??? 61
social impact