The Pinsker subgroup of an abelian group with respect to an endomorphism was introduced in the context of algebraic entropy. Motivated by the nice properties and characterizations of the Pinsker subgroup, we generalize its construction in two directions. Indeed, we introduce the concept of entropy function h of an abelian category, and we define the Pinsker radical with respect to h, so that the class of all objects with trivial Pinsker radical is the torsion class of a torsion theory.

Entropy in a category

DIKRANJAN, Dikran;GIORDANO BRUNO, Anna
2013-01-01

Abstract

The Pinsker subgroup of an abelian group with respect to an endomorphism was introduced in the context of algebraic entropy. Motivated by the nice properties and characterizations of the Pinsker subgroup, we generalize its construction in two directions. Indeed, we introduce the concept of entropy function h of an abelian category, and we define the Pinsker radical with respect to h, so that the class of all objects with trivial Pinsker radical is the torsion class of a torsion theory.
File in questo prodotto:
File Dimensione Formato  
IRIS-cav.pdf

Open Access dal 02/01/2015

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 482.07 kB
Formato Adobe PDF
482.07 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/696687
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact