A Kakutani-von Neumann map is the push-forward of the group rotation (Z_2,+1) to a unit simplex via an appropriate topological quotient. The usual quotient towards the unit interval is given by the base 2 expansion of real numbers, which in turn is induced by the doubling map. In this paper we replace the doubling map with an n-dimensional generalization of the tent map; this allows us to define Kakutani-von Neumann transformations in simplexes of arbitrary dimensions. The resulting maps are piecewise-linear bijections (not just mod 0 bijections), whose orbits are all uniformly distributed; in particular, they are uniquely ergodic w.r.t. the Lebesgue measure. The forward orbit of a certain vertex provides an enumeration of all points in the simplex having dyadic coordinates, and this enumeration can be translated via the n-dimensional Minkowski function to an enumeration of all rational points. In the course of establishing the above results, we introduce a family of {+1,-1}-valued functions, constituting an n-dimensional analogue of the classical Walsh functions.

Kakutani-von Neumann maps on simplexes

PANTI, Giovanni
2011-01-01

Abstract

A Kakutani-von Neumann map is the push-forward of the group rotation (Z_2,+1) to a unit simplex via an appropriate topological quotient. The usual quotient towards the unit interval is given by the base 2 expansion of real numbers, which in turn is induced by the doubling map. In this paper we replace the doubling map with an n-dimensional generalization of the tent map; this allows us to define Kakutani-von Neumann transformations in simplexes of arbitrary dimensions. The resulting maps are piecewise-linear bijections (not just mod 0 bijections), whose orbits are all uniformly distributed; in particular, they are uniquely ergodic w.r.t. the Lebesgue measure. The forward orbit of a certain vertex provides an enumeration of all points in the simplex having dyadic coordinates, and this enumeration can be translated via the n-dimensional Minkowski function to an enumeration of all rational points. In the course of establishing the above results, we introduce a family of {+1,-1}-valued functions, constituting an n-dimensional analogue of the classical Walsh functions.
File in questo prodotto:
File Dimensione Formato  
AA6280.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 663.34 kB
Formato Adobe PDF
663.34 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/696778
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact