A well-known conjecture asserts that smooth threefolds X of the 5-dimensional projective space are quadratically normal with the only exception of the Palatini scroll. As a corollary of a more general statement we obtain the following result, which is related to the previous conjecture: If X is not quadratically normal, then its triple curve is reducible. Similar results are also given for higher dimensional varieties.

On the quadratic normality and the triple curve of three dimensional subvarieties of P^5

DE POI, Pietro;
2010

Abstract

A well-known conjecture asserts that smooth threefolds X of the 5-dimensional projective space are quadratically normal with the only exception of the Palatini scroll. As a corollary of a more general statement we obtain the following result, which is related to the previous conjecture: If X is not quadratically normal, then its triple curve is reducible. Similar results are also given for higher dimensional varieties.
File in questo prodotto:
File Dimensione Formato  
DPMS.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 291.06 kB
Formato Adobe PDF
291.06 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/697355
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact