Electromagnetic problems spatially discretized by the so called Discrete Geometric Approach are considered, where Discrete Counterparts of Constitutive Relations are discretized within an Energetic Approach. Pairs of oriented dual grids are considered in which the primal grid is composed of (oblique) parallelepipeds, (oblique) triangular prisms and tetrahedra and the dual grid is obtained according to the barycentric subdivision. The focus of the work is the evaluation of the constants bounding the approximation error of the electromagnetic field; the novelty is that such constants will be expressed in terms of the geometrical details of oriented dual grids. A numerical analysis will confirm the theory.
Error Bounds for Discrete Geometric Approach
TREVISAN, Francesco
2010-01-01
Abstract
Electromagnetic problems spatially discretized by the so called Discrete Geometric Approach are considered, where Discrete Counterparts of Constitutive Relations are discretized within an Energetic Approach. Pairs of oriented dual grids are considered in which the primal grid is composed of (oblique) parallelepipeds, (oblique) triangular prisms and tetrahedra and the dual grid is obtained according to the barycentric subdivision. The focus of the work is the evaluation of the constants bounding the approximation error of the electromagnetic field; the novelty is that such constants will be expressed in terms of the geometrical details of oriented dual grids. A numerical analysis will confirm the theory.File | Dimensione | Formato | |
---|---|---|---|
REG64_error_cmes.pdf
non disponibili
Tipologia:
Altro materiale allegato
Licenza:
Non pubblico
Dimensione
216.78 kB
Formato
Adobe PDF
|
216.78 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.