We study a class of new examples of congruences of lines of order one, i.e. the congruences associated to the completely exceptional Monge-Ampère equations. We prove that they are in general not linear, and that through a general point of the focal locus there passes a planar pencil of lines of the congruence. In particular, the completely exceptional Monge-Ampère equations are of Temple type.
On a class of first order congruences of lines
DE POI, Pietro;
2009-01-01
Abstract
We study a class of new examples of congruences of lines of order one, i.e. the congruences associated to the completely exceptional Monge-Ampère equations. We prove that they are in general not linear, and that through a general point of the focal locus there passes a planar pencil of lines of the congruence. In particular, the completely exceptional Monge-Ampère equations are of Temple type.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
ghent.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Non pubblico
Dimensione
443.57 kB
Formato
Adobe PDF
|
443.57 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
ghent.pdf
non disponibili
Tipologia:
Altro materiale allegato
Licenza:
Non pubblico
Dimensione
443.57 kB
Formato
Adobe PDF
|
443.57 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.