Apoptosis is characterized by proteolysis of specific cellular proteins by a family of cystein proteases known as caspases. Gas2, a component of the microfilament system, is cleaved during apoptosis and the cleaved form specifically regulates microfilaments and cell shape changes. We now demonstrate that Gas2 is a substrate of caspase-3 but not of caspase-6. Proteolytic processing both in vitro and in vivo is dependent on aspartic residue 279. Gas2 cleavage was only partially impaired in apoptotic MCF-7 cells which lack caspase-3, thus indicating that different caspases can process Gas2 in vivo. In vitro Gas2 was processed, albeit with low affinity, by caspase-7 thus suggesting that this caspase could be responsible for the incomplete Gas2 processing observed in UV treated MCF-7 cells. In vivo proteolysis of Gas2 was detected at an early stage of the apoptotic process when the cells are still adherent on the substrate and it was coupled to the specific rearrangement of the microfilament characterizing cell death. Finally we also demonstrated that Gas2 in vitro binds to F-actin, but this interaction was unaffected by the caspase-3 dependent proteolytic processing.

Caspase-3 and caspase-7 but not caspase-6 cleave Gas2 in vitro: implications for microfilament reorganization during apoptosis

BENETTI, Roberta;SCHNEIDER, Claudio;BRANCOLINI, Claudio
1999

Abstract

Apoptosis is characterized by proteolysis of specific cellular proteins by a family of cystein proteases known as caspases. Gas2, a component of the microfilament system, is cleaved during apoptosis and the cleaved form specifically regulates microfilaments and cell shape changes. We now demonstrate that Gas2 is a substrate of caspase-3 but not of caspase-6. Proteolytic processing both in vitro and in vivo is dependent on aspartic residue 279. Gas2 cleavage was only partially impaired in apoptotic MCF-7 cells which lack caspase-3, thus indicating that different caspases can process Gas2 in vivo. In vitro Gas2 was processed, albeit with low affinity, by caspase-7 thus suggesting that this caspase could be responsible for the incomplete Gas2 processing observed in UV treated MCF-7 cells. In vivo proteolysis of Gas2 was detected at an early stage of the apoptotic process when the cells are still adherent on the substrate and it was coupled to the specific rearrangement of the microfilament characterizing cell death. Finally we also demonstrated that Gas2 in vitro binds to F-actin, but this interaction was unaffected by the caspase-3 dependent proteolytic processing.
File in questo prodotto:
File Dimensione Formato  
J Cell Sci-1999-Sgorbissa-4475-82.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 459.43 kB
Formato Adobe PDF
459.43 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11390/710875
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 55
social impact