One of the mechanisms through which some strategy I plants respond to Fe-deficiency is an enhanced acidification of the rhizosphere due to proton extrusion. It was previously demonstrated that under Fe-deficiency, a strong increase in the H+-ATPase activity of plasma membrane (PM) vesicles isolated from cucumber roots occurred. This result was confirmed in the present work and supported by measurement of ATP-dependent proton pumping in inside-out plasma membrane vesicles. There was also an attempt to clarify the regulatory mechanism(s) which lead to the activation of the H+-ATPase under Fe-deficiency conditions. Plasma membrane proteins from Fe-deficient roots submitted to immunoblotting using polyclonal antibodies showed an increased level in the 100 kDa polypeptide. When the plasma membrane proteins were treated with trypsin a 90 kDa band appeared. This effect was accompanied by an increase in the enzyme activity, both in the Fe-deficient and in the Fe-sufficient extracts. These results suggest that the increase in the plasma membrane H+-ATPase activity seen under Fe-deficiency is due, at least in part, to an increased steady-state level of the 100 kDa polypeptide

Development of Fe-deficiency responses in cucumber (Cucumis sativus L.) roots: involvement of plasma membrane H+-ATPase activity

SANTI, Simonetta;PINTON, Roberto
2000-01-01

Abstract

One of the mechanisms through which some strategy I plants respond to Fe-deficiency is an enhanced acidification of the rhizosphere due to proton extrusion. It was previously demonstrated that under Fe-deficiency, a strong increase in the H+-ATPase activity of plasma membrane (PM) vesicles isolated from cucumber roots occurred. This result was confirmed in the present work and supported by measurement of ATP-dependent proton pumping in inside-out plasma membrane vesicles. There was also an attempt to clarify the regulatory mechanism(s) which lead to the activation of the H+-ATPase under Fe-deficiency conditions. Plasma membrane proteins from Fe-deficient roots submitted to immunoblotting using polyclonal antibodies showed an increased level in the 100 kDa polypeptide. When the plasma membrane proteins were treated with trypsin a 90 kDa band appeared. This effect was accompanied by an increase in the enzyme activity, both in the Fe-deficient and in the Fe-sufficient extracts. These results suggest that the increase in the plasma membrane H+-ATPase activity seen under Fe-deficiency is due, at least in part, to an increased steady-state level of the 100 kDa polypeptide
File in questo prodotto:
File Dimensione Formato  
Dell'Orto JEB51 2000.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 186.61 kB
Formato Adobe PDF
186.61 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/713243
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 95
  • ???jsp.display-item.citation.isi??? 86
social impact