The transformed likelihood approach to estimation of fixed effects dynamic panel data models is shown to present very good inferential properties but it is not directly implemented in the most diffused statistical software. The present paper aims at showing how a simple model reformulation can be adopted to describe the problem in terms of classical linear mixed models. The transformed likelihood approach is based on the first differences data transformation, the following results derive from a convenient reformulation in terms of deviations from the first observations. Given the invariance to data transformation, the likelihood functions defined in the two cases coincide. Resulting in a classical random effect linear model form, the proposed approach significantly improves the number of available estimation procedures and provides a straightforward interpretation for the parameters. Moreover, the proposed model specification allows to consider all the estimation improvements typical of the random effects model literature. Simulation studies are conducted in order to study the robustness of the estimation method to mean stationarity violation.
A note on transformed likelihood approach in linear dynamic panel models
GRASSETTI, Luca
2011-01-01
Abstract
The transformed likelihood approach to estimation of fixed effects dynamic panel data models is shown to present very good inferential properties but it is not directly implemented in the most diffused statistical software. The present paper aims at showing how a simple model reformulation can be adopted to describe the problem in terms of classical linear mixed models. The transformed likelihood approach is based on the first differences data transformation, the following results derive from a convenient reformulation in terms of deviations from the first observations. Given the invariance to data transformation, the likelihood functions defined in the two cases coincide. Resulting in a classical random effect linear model form, the proposed approach significantly improves the number of available estimation procedures and provides a straightforward interpretation for the parameters. Moreover, the proposed model specification allows to consider all the estimation improvements typical of the random effects model literature. Simulation studies are conducted in order to study the robustness of the estimation method to mean stationarity violation.File | Dimensione | Formato | |
---|---|---|---|
Grassetti2011.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
319.52 kB
Formato
Adobe PDF
|
319.52 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.