Inter- and intra-hemispheric connectivity disturbances have been suggested to play a major role in schizophrenia. To this extent, diffusion weighted imaging (DWI) is a relatively new technique examining subtle white matter microstructure organization. DWI studies in schizophrenia strongly suggest that white matter communication is disrupted. This supports the hypothesis that there is a cortico-cortical and transcallosal altered connectivity in schizophrenia, which may be relevant for the pathophysiology and the cognitive disturbances of the disorder. Future longitudinal diffusion and functional imaging studies targeting brain communication together with genetic investigations should further characterize white matter pathology in schizophrenia and its relevance for the development of the illness.
The role of white matter for the pathophysiology of schizophrenia
BRAMBILLA, Paolo;
2007-01-01
Abstract
Inter- and intra-hemispheric connectivity disturbances have been suggested to play a major role in schizophrenia. To this extent, diffusion weighted imaging (DWI) is a relatively new technique examining subtle white matter microstructure organization. DWI studies in schizophrenia strongly suggest that white matter communication is disrupted. This supports the hypothesis that there is a cortico-cortical and transcallosal altered connectivity in schizophrenia, which may be relevant for the pathophysiology and the cognitive disturbances of the disorder. Future longitudinal diffusion and functional imaging studies targeting brain communication together with genetic investigations should further characterize white matter pathology in schizophrenia and its relevance for the development of the illness.File | Dimensione | Formato | |
---|---|---|---|
BrambillaTansella_WMreview_IRP07.pdf
non disponibili
Tipologia:
Altro materiale allegato
Licenza:
Non pubblico
Dimensione
83.24 kB
Formato
Adobe PDF
|
83.24 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.