This paper presents experimental results on the implementation of decentralized velocity feedback control on a new smart panel in order to produce active damping. The panel is equipped with 16 triangularly shaped piezoceramic patch actuators along its border and accelerometer sensors located at the top vertex of the triangular actuators. The primary objective of this paper is to demonstrate the vibration and sound radiation control using the new smart panel. Narrow frequency band experimental results highlight that the 16 control units can produce reductions up to 15 dB at resonance frequencies between 100 and 700 Hz in terms of both structural vibration and sound power radiation. © 2008 Acoustical Society of America.
Rectangular plate with velocity feedback loops using triangularly shaped piezoceramic actuators: Experimental control performance
GARDONIO, Paolo;
2008-01-01
Abstract
This paper presents experimental results on the implementation of decentralized velocity feedback control on a new smart panel in order to produce active damping. The panel is equipped with 16 triangularly shaped piezoceramic patch actuators along its border and accelerometer sensors located at the top vertex of the triangular actuators. The primary objective of this paper is to demonstrate the vibration and sound radiation control using the new smart panel. Narrow frequency band experimental results highlight that the 16 control units can produce reductions up to 15 dB at resonance frequencies between 100 and 700 Hz in terms of both structural vibration and sound power radiation. © 2008 Acoustical Society of America.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.