Nuclear proteins play a major role in controlling cell functions. Differential proteomic analysis of nuclear proteins by combined 2D gel electrophoresis (2D-E) and mass spectrometry procedures can provide useful information to understand the control of cell proliferation and differentiation. To identify proteins involved in dedifferentiation, we used a differential proteomics approach by comparing nuclear extracts from the differentiated rat thyroid cell line FRTL-5 and the derived undifferentiated Ki-mol cell line, obtained by transformation with the Ki-ras oncogene. Thirteen proteins were identified as differently expressed in the nuclear compartment between the two cell lines. RT-PCR analysis performed on seven differently expressed genes showed that only in two cases the difference may be ascribable to a transcriptional mechanism. Since one of the identified proteins, namely apurinic apyrimidinic endonuclease/redox effector factor-1 (APE 1/Ref-1), is suspected to play a role in thyroid tumorigenesis, we used a glutathione S-transferase (GST)-pulldown assay coupled to a 2D electrophoretic/matrix assisted laser desorption ionization-time of flight (MALDI-TOF)-mass spectrometry (MS) analysis to detect and identify its interacting partners. We show here that P-actin directly interacted with APE 1/Ref-1, as confirmed by co-immunoprecipitation assays and that this interaction was enhanced by oxidative stress on FRTL-5 cells. (c) 2006 Elsevier B.V. All rights reserved.

Differential proteomic analysis of nuclear extracts from thyroid cell lines

VASCOTTO, Carlo;DAMANTE, Giuseppe;TELL, Gianluca
2006-01-01

Abstract

Nuclear proteins play a major role in controlling cell functions. Differential proteomic analysis of nuclear proteins by combined 2D gel electrophoresis (2D-E) and mass spectrometry procedures can provide useful information to understand the control of cell proliferation and differentiation. To identify proteins involved in dedifferentiation, we used a differential proteomics approach by comparing nuclear extracts from the differentiated rat thyroid cell line FRTL-5 and the derived undifferentiated Ki-mol cell line, obtained by transformation with the Ki-ras oncogene. Thirteen proteins were identified as differently expressed in the nuclear compartment between the two cell lines. RT-PCR analysis performed on seven differently expressed genes showed that only in two cases the difference may be ascribable to a transcriptional mechanism. Since one of the identified proteins, namely apurinic apyrimidinic endonuclease/redox effector factor-1 (APE 1/Ref-1), is suspected to play a role in thyroid tumorigenesis, we used a glutathione S-transferase (GST)-pulldown assay coupled to a 2D electrophoretic/matrix assisted laser desorption ionization-time of flight (MALDI-TOF)-mass spectrometry (MS) analysis to detect and identify its interacting partners. We show here that P-actin directly interacted with APE 1/Ref-1, as confirmed by co-immunoprecipitation assays and that this interaction was enhanced by oxidative stress on FRTL-5 cells. (c) 2006 Elsevier B.V. All rights reserved.
File in questo prodotto:
File Dimensione Formato  
Salzano et al. - J Chromatogr B Analyt Technol Biomed Life Sci.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 280.89 kB
Formato Adobe PDF
280.89 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/848900
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact